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Can `Unsharp Objectification’ Solve the Quantum
Measurement Problem?

Paul Busch1
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The quantum measurement problem is formulated in the form of an insolubility
theorem that states the impossibility of obtaining, for all available object
preparations, a mixture of states of the compound object and apparatus system
that would represent definite pointer positions. A proof is given that comprises
arbitrary object observables, whether sharp or unsharp, and besides sharp pointer
observables a certain class of unsharp pointers, namely, those allowing for the
property of pointer value definiteness. A recent result of H. Stein is applied to
allow for the possibility that a given measurement may not be applicable to all
possible object states, but only to a subset of them. The question is raised whether
the statement of the insolubility theorem remains true for genuinely unsharp
observables. This gives rise to a precise notion of unsharp objectification .

1. INTRODUCTION

The claim of the insolubility of the quantum measurement problem has

been given a precise formulation in a series of papers aiming at increasing

generality of the premises (see, e.g., Wigner, 1963; d’ Espagnat, 1966; Fine,

1970; Shimony, 1974; Brown, 1986). The most recent step provided an

extension of the insolubility proof to include measurements of arbitrary sharp
or unsharp object observables (Busch and Shimony, 1996). In the present

contribution I consider the even more general case of measurements based

on pointer observables that are not necessarily sharp. It will be shown that

the established proof strategy of the previous no-go theorems can be adapted

so as to cover a certain class of unsharp pointer observables: those admitting

definite values. Technically this corresponds to the case of a positive operator-
valued (POV) measure Z on a s -algebra S which is such that each effect

Z (X ), X P S , has eigenvalue 1. The corresponding eigenstates are those
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states in which the pointer has definite values. Note that this does not require

the effect to be a projection. It will be shown that no unitary measurement

exists in which the compound object-plus-apparatus system could always
(i.e., for arbitrary initial object states) be in a mixture of states in which the

extended pointer (I ^ Z ) would have definite values. The occurrence of such

a mixture is a necessary condition for the pointer objectification (Busch et
al., 1996). The proof technique used here differs from that used by Shimony

(1974) and Busch and Shimony (1996) in that a recent theorem due to Stein

(1997) is applied. This provides an extension of his impossibility theorem
and the insolubility theorem of Busch and Shimony (1996).

This result implies that the quantum measurement problem is not simply

due to idealizations in which possible measurement inaccuracies are

neglected: in using the general representation of observables as POV mea-

sures, all kinds of inaccuracy have been taken into accountÐ to the extent

they are still compatible with the idea of definite pointer values. The remaining
potential loophole is furnished by the case of pointer observables which are

genuinely unsharp in that they do not allow for pointer value definiteness.

This opens up the challenge to make precise sense of the idea of unsharp
objectification, which will be done here.

Apart from the possibility that no insolubility theorem might hold for
genuinely unsharp pointers, the existing no-go theorems allow an exhaustive

systematic overview of the possible modifications of quantum mechanics, or

of its interpretations, that may be, and have been, undertaken to resolve (or

dissolve) the measurement problem (Busch et al., 1996).

2. NOTION OF MEASUREMENT IN QUANTUM MECHANICS

In the following I shall adopt the usual Hilbert space formulation of

quantum mechanics, where observables and states are represented as, and

identified with, certain positive operator-valued (POV) measures and density

operators, respectively. These concepts are required to formulate the probabil-

ity structure of the theory in its (probably) most general form. Then according
to the minimal interpretation of quantum mechanics, the probability measures

provided by the formalism give the probability distributions for measurement

outcomes, and thus the expected experimental statistics.

This minimal notion of an observableÐ and of a measurementÐ is cap-

tured in the so-called probability reproducibility condition. The essential

elements of a measurement are conveniently summarized in the concept of
a measurement scheme, represented as a quadruple } : 5 ^ *!, r !, U, Z & ,
where *! denotes the Hilbert space of the measuring device (or probe) !,

Z the pointer observable of !, i.e., a POV measure on some measurable

space,( V , S ), r ! a fixed initial state of ! and U the unitary measurement
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coupling serving to establish a correlation between the object system 6
(with Hilbert space *) and !. Any measurement scheme } fixes a unique

observable of 6, that is, a POV measure E on ( V , S ) such that the following
condition is fulfilled.

x Probability Reproducibility Condition:

tr[I ^ Z(X )U r ^ r !U*] 5 tr[E (X ) r ] (PR)

for all states r of 6 and all outcome sets X P S .

E is the observable measured by means of }. Conversely, if an observable

E of 6 is given, then this condition determines which measurement schemes

} serve as measurements of E.

3. THE OBJECTIFICATION PROBLEM

The probability reproducibility condition specifies what it means that a

measurement scheme serves to measure a certain observable. However, this

condition does not exhaust the notion of measurement. In fact the reproduction

of probabilities in the pointer statistics requires first of all that in each run
of a measurement a pointer reading will occur; in other words: it is part of

the notion of measurement that measurements do have definite outcomes.

While the concept of a measurement scheme allows one to describe what

happens to the object and apparatus when an outcome arises, quantum

mechanics is facing severe difficulties to explain the occurrence of such

outcomes. This problem arises if one starts with the interpretational idea that
an observable has a definite value when the object system in question is in

an eigenstate of that observable. If a probe system is coupled to that object,

then probability reproducibi lity requires that the corresponding value is indi-

cated with certainty by the pointer reading after the measurement interaction

has ceased. In this way a definite value of the object observable leads deter-

ministically to a definite value of the pointer observable. However, if the
object is not in an eigenstate, the observable cannot be ascertained to have

a definite value, and by the linearity of the unitary measurement coupling,

the compound object-plus-probe system ends up in a state in which it cannot

be ascertained, by appeal to the eigenstate±eigenvalue link, that the pointer

has a definite value. This is the measurement problem, or the problem of the

objectification of pointer values.
Resolutions to this problem are being sought by changing the rules of

the game: either on the side of the formalism (introduction of classical

observables, or modified dynamics), or on the interpretational side (hidden

variables theories such as `Bohmian mechanics’ or various `no-collapse’
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interpretations). Before embarking on such radical revisional programs, it

seems fair to make sure that the measurement problem is not merely a

consequence of overly idealized assumptions that would disappear in a more
realistic account. It turns out, however, that the problem does persist even

when measurements are allowed to be inaccurate and the measuring system

is in a mixed rather than a pure state. The development of these arguments

is reviewed in Busch and Shimony (1996), where an insolubility theorem is

given that pertains to measurements of sharp and unsharp object observables.

This result has recently been overtaken by Stein (1997), who showed that
the objectification problem persists for arbitrary measurement schemes also

when the measurement is not required to be applicable to all object prepara-

tions, but only to states in some subspace of the object’ s Hilbert space. Based

on this result, a further step will now be taken that comprises the possibility

of the pointer being an unsharp observable as well, as long as pointers can

still assume definite values.
In order to give the precise statement of the insolubility theorem, let us

consider a measurement scheme }. The theorem is based on the following

requirements as necessary conditions for the definiteness, or objectivity, of

sharp values of the pointer Z in the postmeasurement state:

r 86! [ U r 6 ^ r ! U*

x Pointer mixture condition:

r 86! 5 o I ^ Z(x i)
1/2 r 86! I ^ Z(Xi)

1/2 [ o r 86! (Xi) (PM)

for some partition V 5 ø Xi and all initial object states r .

x Pointer value definiteness:

tr[I ^ Z(Xi) r 86!(Xi)] 5 tr[ r 86!(X i)] (PVD)

for all i and all initial object states r .

For a derivation of these conditions, see Busch et al. (1996). The first

says that the postmeasurement state should be a mixture of pointer eigenstates,

while the second requires that the final states conditional on reading a result

in Xi are indeed eigenstates of the pointer for which X i has probability

one to occur again upon immediate repetition of the reading of the pointer
observable Z.

Insolubility Theorem. If a measurement scheme } fulfills (PM) and

(PVD) for all object states r supported in some subspace *0 of *, then the

measured observable E according to (PR) is trivial with respect to all such
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states; that is, tr[E (X ) r ] 5 l (X ) for all X P S , where l is a state-independent

probability measure on ( V , S ). Hence if a measurement scheme is to lead

to objective pointer values, it will yield no information at all about the object.

4. PROOF OF THE INSOLUBILITY THEOREM

We make use of the following lemma by Stein (1997), applying it very

much in the same way as Stein himself did, but using our terminology and

allowing for unsharp pointers.

Lemma. Let Q, R be bounded linear operators on *! and * ^ *!,

respectively. Let *8 be a vector subspace of *. Assume that for all nonzero
vectors w P *8,

(P[ w ] ^ Q)R 5 R(P [ w ] ^ Q)

(Here P [ w ] denotes the projection onto the ray containing w .) Then there

exists a unique bounded linear operator r Ä ! in *! such that

(P[ w ] ^ Q)R 5 P[ w ] ^ r Ä ! for all w P *0

We apply this as follows: for any w P *0 we denote r 6! ( w ) : 5 P [ w ]

^ r ! and r 86!( w ) : 5 U(P [ w ] ^ r ! )U 2 1. By assumption (PVD), any nonzero
effect Z (X ) has eigenvalue 1. Let Z (Xi)

(1) denote the corresponding spectral

projection of the effect Z (Xi). Then the assumption (PM) is equivalent to

saying that each nonzero component state r 86! (Xi) is an eigenstate of Z (Xi)
(1)

associated with the eigenvalue 1, that is, Z (X i)
(1) r 86!(Xi) 5 r 86!(X i) for all Xi

of the given partition. Therefore (PM) implies that r 86!( w ) commutes with

all I ^ Z (X i)
(1), and thus also with all I ^ Z (Xi):

[I ^ Z(Xi), r 86!( w )] 5 O

We rewrite this as follows:

[U 2 1(I ^ Z(X i))U, P [ w ] ^ r !] 5 O

Now we make the following choices for the operators R, Q introduced

in the Lemma: for each i, let Ri 5 U 2 1 (I ^ Z (X i))U and Qi 5 r !. Then by

virtue of the Lemma there exists an operator r Ä !(X i) such that

P[ w ] ^ r !U 2 1(I ^ Z(Xi))U 5 P[ w ] ^ r Ä !(X i)

Taking the trace yields the probabilities for the measured observable E }.

tr[P[ w ]E}(Xi)] 5 tr[ r Ä !(Xi)]

As the operators r Ä !(X i) are independent of w , it follows that the measured

observable is trivial with respect to states from the subspace *0. This com-

pletes the proof.



246 Busch

5. UNSHARP OBJECTIFICATION

The residual question left open by the above result is whether the

conclusion of `no information gain’ remains valid if the assumption (PVD)

of definite pointer values is dropped. That is, one would only require a

modified form of (PM) to hold: the final object-plus-apparatus state should
be a mixture of states,

r 86! 5 o
i

r 96!(Xi)

in which the pointer is unsharply real. By this we mean that the component

states should be `near-eigenstates’ of I ^ Z (Xi) in the sense that they give

probabilities close to one for the corresponding Xi. If in addition it can be

ascertained that the above mixture admits an ignorance interpretation, then
it shall be said that unsharp objectification has taken place.

Unsharp objectification, as explained here, would be a rather natural

option if the pointer observables available in realistic experiments were

genuinely unsharp (so that they would not allow for probabilities equal to

one). One can argue that pointers, being macroscopic quantities, are in fact
of that kind. Some of the arguments supporting this conclusion are detailed

in Busch et al. (1995, 1996). Unsharp pointer readings correspond to a

situation where the pointer states associated with different values are not

(strictly) orthogonal. Thus one cannot claim with certainty that the reading

one means to have taken is reproducible on a `second look’ at the pointer.

For macroscopic quantities, however, the potential error will be practically
negligible, as it can be extremely small compared to the scale of the reading.

Yet I would conjecture that unsharp objectification cannot be achieved

either. Once this would have been established, one could safely conclude

that the only way out lies in some of the mentioned modifications either of

the formalism or the interpretation of quantum mechanics. Nevertheless it

seems worthwhile to pursue the notion of unsharp pointers, as it may contrib-
ute to resolving some problems these alternative approaches are still facing,

such as the so-called tail problem that arises in the case of the (continuous)

spontaneous collapse models.
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